skip to main content


Search for: All records

Creators/Authors contains: "Mueller, Ulrich G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Shade, Ashley (Ed.)
    ABSTRACT We develop a method to artificially select for rhizosphere microbiomes that confer salt tolerance to the model grass Brachypodium distachyon grown under sodium salt stress or aluminum salt stress. In a controlled greenhouse environment, we differentially propagated rhizosphere microbiomes between plants of a nonevolving, highly inbred plant population; therefore, only microbiomes evolved in our experiment, but the plants did not evolve in parallel. To maximize microbiome perpetuation when transplanting microbiomes between plants and, thus, maximize response to microbiome selection, we improved earlier methods by (i) controlling microbiome assembly when inoculating seeds at the beginning of each selection cycle; (ii) fractionating microbiomes before transfer between plants to harvest, perpetuate, and select on only bacterial and viral microbiome components; (iii) ramping of salt stress gradually from minor to extreme salt stress with each selection cycle to minimize the chance of overstressing plants; (iv) using two nonselection control treatments (e.g., nonselection microbial enrichment and null inoculation) that permit comparison to the improving fitness benefits that selected microbiomes impart on plants. Unlike previous methods, our selection protocol generated microbiomes that enhance plant fitness after only 1 to 3 rounds of microbiome selection. After nine rounds of microbiome selection, the effect of microbiomes selected to confer tolerance to aluminum salt stress was nonspecific (these artificially selected microbiomes equally ameliorate sodium and aluminum salt stresses), but the effect of microbiomes selected to confer tolerance to sodium salt stress was specific (these artificially selected microbiomes do not confer tolerance to aluminum salt stress). Plants with artificially selected microbiomes had 55 to 205% greater seed production than plants with unselected control microbiomes. IMPORTANCE We developed an experimental protocol that improves earlier methods of artificial selection on microbiomes and then tested the efficacy of our protocol to breed root-associated bacterial microbiomes that confer salt tolerance to a plant. Salt stress limits growth and seed production of crop plants, and artificially selected microbiomes conferring salt tolerance may ultimately help improve agricultural productivity. Unlike previous experiments of microbiome selection, our selection protocol generated microbiomes that enhance plant productivity after only 1 to 3 rounds of artificial selection on root-associated microbiomes, increasing seed production under extreme salt stress by 55 to 205% after nine rounds of microbiome selection. Although we artificially selected microbiomes under controlled greenhouse conditions that differ from outdoor conditions, increasing seed production by 55 to 205% under extreme salt stress is a remarkable enhancement of plant productivity compared to traditional plant breeding. We describe a series of additional experimental protocols that will advance insights into key parameters that determine efficacy and response to microbiome selection. 
    more » « less
  2. Abstract

    Symbionts can have profound effects on host fitness, adaptations and range distributions. Stress‐induced evolution is difficult to show in obligate symbioses; however, adaptive evolution within an obligate symbiosis can be investigated experimentally or by correlating trait variation with stress along an ecological cline (i.e. temperature‐stress gradient).

    We investigated the cold tolerance of the fungus‐growing antTrachymyrmex septentrionalisby performing cold tolerance assays comparing two populations collected from either the southernmost range of their distribution (Bastrop, Texas) or from a site that is approximately 600 km further north (Norman, Oklahoma). We first compared isolated fungal symbionts grown on artificial media to determine cold tolerance of fungus alone. Subsequently, we conducted cross‐fostering experiments between northern and southern host and symbionts to test for synergisms between the partners in generating adaptations of cold tolerance.

    Ants of the northern fungal populations were more cold adapted than southern fungal populations. Northern nests were deeper and northern colonies initially rejected fungi from the southern population. The cross‐fostering experiments demonstrated that only one partner must be cold tolerant to confer maximum cold tolerance to the ant–fungus symbiosis, because northern ants growing southern fungus under cold stress performed just as well as northern ants growing northern fungi.

    Our results suggest that cold stress has been an important selective factor during the migration of this ant–fungus symbiosis into northern latitudes during the last 10,000 years, and that cold tolerance likely is an energetically demanding trait that may be traded off with other aspects of the symbiosis' life history. The symbiosis also appears to have evolved several additional adaptations that increase survival in cold environments, such as building deeper nests that insulate the fungi from cold surface.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  3. Abstract

    To explore landscape genomics at the range limit of an obligate mutualism, we use genotyping‐by‐sequencing (ddRADseq) to quantify population structure and the effect of host–symbiont interactions between the northernmost fungus‐farming leafcutter antAtta texanaand its two main types of cultivated fungus. Genome‐wide differentiation between ants associated with either of the two fungal types is of the same order of magnitude as differentiation associated with temperature and precipitation across the ant's entire range, suggesting that specific ant–fungus genome–genome combinations may have been favoured by selection. For the ant hosts, we found a broad cline of genetic structure across the range, and a reduction of genetic diversity along the axis of range expansion towards the range margin. This population‐genetic structure was concordant between the ants and one cultivar type (M‐fungi, concordant clines) but discordant for the other cultivar type (T‐fungi). Discordance in population‐genetic structures between ant hosts and a fungal symbiont is surprising because the ant farmers codisperse with their vertically transmitted fungal symbionts. Discordance implies that (a) the fungi disperse also through between‐nest horizontal transfer or other unknown mechanisms, and (b) genetic drift and gene flow can differ in magnitude between each partner and between different ant–fungus combinations. Together, these findings imply that variation in the strength of drift and gene flow experienced by each mutualistic partner affects adaptation to environmental stress at the range margin, and genome–genome interactions between host and symbiont influence adaptive genetic differentiation of the host during range evolution in this obligate mutualism.

     
    more » « less